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Background: Developmental periods in early life may be particularly vulnerable to impacts of 
environmental exposures. Human ressarch on this topic has generally focused on single exposure—
health effectrelationships. Theexposome" concept encompasses the totality of exposures from 
conception onward, complementing the genome. 

oBjectives: Theluman Early-Life Expcsome (HELIX) project is a new collaborative research 
project that aims to implement novel exposure assessment and biomarker methods to characterize 
early-I ife exposure to multiple environmental factors and associate thew with omics biomarkersand 
child health outcomes, thus characterizing the "early-life exposure." Here we describe the general 
design of the project. 

Met n o ds: In six existing birth cohort studies in Europe, HELIX will estimate prenatal and post-
natal exposure to a broad range of chemical and physical exposures. Exposure models will be devel-
oped for the full cohorts totaling 32,000 mother—child pairs, and biommicets will be meesured in 
a subset of 1,200 mother—child pairs. Nested repeat-sampling panel studies (n = 150) will collect 
data on biomarker variability, use snartphones to awes mobility and physical activity, and perform 
personal exposure monitoring. Omics techniques will determine molecular profiles(metabolome, 
proteome, transcriptome, epigenome) associated with exposures. Statistical methods for mul-
tiple expcsureswill provide exposure—response estimates for fetal and child growth, obesity, neuro-
development, and respiratory outcomes. A health impact aseassnent exercise will evaluate risls and 
benefits of combined exposures. 

conci usio ns: HELIX is one of the firstattempts to describe the early-life expo some of European 
populations and unravel its relation to omics markers and health in childhood. As proof of concept, 
it will form an important first step toward the life-course expcsome. 
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Introduction 
Environmental hazards such as ambient ai r 
pollution, environmental tobacco smoke 
(ETS), noise, pesticides, and radiation may 
lead to serious, chronic pathologies. The 
fetus and infant are particularly vulner-
able to such potential hazards (Barouki 
et al. 2012; Gluckman and Hanson 2004; 
Hines et al. 2010). Environmental expo- 
surcs 	preconceptionally, in utero, and dur- 
ing early lifc 	may perrn.inently change the 
body's structure, physiology, and metabo-
lism (Gluckman and Hanson 2004). Such 
changes can promote disease long after  

the environmental exposure has occurred, 
including across generations. Environmental 
exposures during fetal or early life have been 
associated with adverse fetal growth and 
with developmental neurotoxic, immuno-
toxic, and obesogen ic effects in children; 
but for many of these associations, evidence 
ha; been classified as limited or inadequate 
(e.g., Bellinger 2013; Garcon et al. 2013a; 
La Merrill and Birnbaum 2011; Wigle 
et al. 2008). Neurodevelopmental disabili-
ties, obesity, and asthma are common and 
highly complex chronic pathologies, and it 
is hypothesized that improved understanding  

of how simultaneous environmental risk 
factors interact among themselves, with indi-
vidual characteristics (e.g., genetics), and with 
epigenetics, can help elucidate their causes 
(Bousquet et al. 2011; Gallagher et al. 2011; 
Trasande et al. 2009; Van den Bergh 2011). 
Up to now, the field of environment and 
child health has almost uniquely focused on 
single exposure—health effect relationships; 
there is no global view of how various types 
of exposures co-exist and jointly affect health. 

The expomme. The "exposome" concept 
was firstproposed by Wild (2005) to encom -
pass the totality of human environmental 
(Le., nongenetic) exposures from conception 
onward, complementing the genome; it was 
developed "to draw attention to the critical 
need for more complete environmental expo-
sure data in epidemiological studies" (Wild 
2012). I n this concept, the expo some oontai ns 
several overlapping domains of nongenetic 
factors contributing to disease risk, includ-
ing a general external domain (social, socie-
tal, urban environment, climate factors), a 
specific external domain (specific contami-
nants, li(eblyle factors, tobacco, occupation), 
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Figure 2. Participating birth cohorts. 
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and an internal environment (metabolism, 
gut microflora, i nfla-nr t re 	tion,oxidathe stress) 
(Wild 2012). Thexposorre calls for improve - 
ment of often uncertain exposure data, for 
integration of data on biological mechanisms, 
and for a more holistic exposure approach 
in epidemiological studies. Furthermore, it 
has been proposed that the exposome may 

rve an important purpose in characterizing 
not only the complex mixtures of already 
identified exposures but also, through its 
untargeted approach and the use of high-
throughput "omits" techniques, relevant 
exposures that have this far retrained uniden-
tified(Rappaport 2011; Rappaport and Smith 
2010). Therere large challenges in develop - 
ing the exposome concept into a workable 

1. Measuring the external exposome 

Repeat 
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exposure 

monitors, and 
models 

GIS/spatial 
nu 	Is, 
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exposure 
monitors, 

smart phones 

approach, including the consideration of 
multiple, longitudinal time periods of interest 
and of temporal variability, the acknowledge-
ment of exposure uncertainty in an exposome 
study, the integration of omits data, and the 
development of powerful statistical techniques 
to analyze the associations between exposome 
data and adverse health end points. 

The HELIX (Human Early-Life 
Exposome) project has as its general aim to 
implement tools and methods (biomarkers, 
omits-based approaches, remote zensing and 
GIS-based spatial methods, personal exposure 
devices, statistical tools for combined expo-
sures, and burden of discase methodologies), to 
chatalerize early-I ife exposure to a wide range 
of chemical and physical environmental factors 

Cohort 
Enrollment 

years 
n subjects 

(total 3Z000) 

BIB—Bcrn in Bradford, UK 
(Wright et al 2013) 

2007-2310 14,000 

EDEN—Study of 
determinants of pre- and 
postnatal develoonental, 
France (Drouillet et al 2609) 

2003-2006 2600 

I NMA—Environment and 
Olildhood, Spain (Guxens 
et al. 2312) 

2301-216 2,500 

KANC—Kaunas Cohort, 
Lithuania (Grazuleviciene 
et al. 210) 

2007-2009 4,000 

MoBa—The Norwegian 
felother and Child Cohort 
Study, Norway (Oslo region) 
(Magnus et al.2006) 

1920-2309 8,000 

Rhea—Mother-Child Cohort 
in Crete, Greece (Chatzi et al. 

2007-2008 1,500 

2009) 

and associate these with data on major child 
health outcomes (growth and obesity, neuro-
development, respiratory health), thus develop-
ng an "early-life exposome" approarh. The 

project takes pregnancy and childhood periods 
("early life") as the starting point for develop-
ing the life-course exposome. In this review 
we diocoribe the general design of HELIX and 
its main challenges. In this manner, we aim 
to illustrate how the exposome concept may 
be implemented in a feasible epidemiological 
study design. 

Project Concept, Objectives, 
and Study Populations 
HELIX will develop the early-life exposome 
approarh and database in three overlapping 
steps containing six research areas (Figure 1). 
A first step will measure the external expo-
some exposure estimates for a broad range 
of chemical and physical exposures; a sec-
ond step will measure the internal exposome 
(molecular signatures) and integrate the mul-
tiple dimensions of the exposome (multiple 
exposures, multiple time points, individual 
variability); and a third step will develop the 
tools and methods to evaluate the expoeome's 
impact on child health (Figure 1). Thproj - 
ect is based in six existing population-based 
birth cohort studies in Europe (Figure 2). 
Objectives are the following: 
Step 1: Measuring the external exposome: 
• To obtain estin 	Idles of exposure to persis- 

tent and nonpersistent pollutants in food, 
consumer products, water, and indoor air, 
during pregnancy and in childhood. 

• To obtain estimates of chemical and 
physical exposures in the outdoor environ-
ment during pregnancy and in childhood: 
ambient air pollution, ambient noise, ultra-
violet (UV) radiation, temperature, and 
built environment/green space. 

Step 2: Integrating the external and inter-
nal exposome: 
• To definemultiple exposure patterns in the 

individual and outdoorenvironment, describe 
their predictors, and describe uncertainties 
and variability in the exposures ases3ed. 

• To measure molecular signatures associ-
ated with environmental exposures through 
analysis of profiles of metabolites, pro-
teins, transcripts, and DNA methylation 
in biological samples from the children in 
the cohorts. Biological pathway analyses 
will be used to inform analyses of the rela-
tionship between multiple exposures and 
child health. 

Step 3: Impact of the early-I ife exposome on 
child health: 
• To develop a novel multistep statistical 
approach for the analysis of the associa-
tion of patterns of multiple and combined 
exposures and child health outcomes, using 
agnostic environment-wide association 

Figure 1. FELIX conceptual framework and interactions between research areas. 
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Figure 3. Study design, study populations, and data sources. 

The human early-life exposome 

study (EWAS) analysis, structural equation 
modeling (SEM), and Bayesian profile 
regression. 

• To provide exposure-responseestimates for 
the association of multiple and combined 
exposures with child health, focusing on 
fetal and childhood growth and obesity, 
neurodevelopment, and respiratory health. 

• To estimate the burden of common child-
hood diseases that may be attributed to 
multi ple envi ronmental exposures in Europe. 

• To strengthen the knowledge base for 
European policy in the area of child and 
environmental health by engaging with, and 
effectivelydisseminating HELIX knowledge 
to stakeholders including those responsible 
for risk management and mitigation and 
prevention strategies. 

The birth cohorts. Six existing longitu-
dinal population-based birth cohort studies 
in Europe form the basis of the project: BiB 
(Born in Bradford; United Kingdom) (Wright 
et al. 2013), EDEN (Etude des Determinants 
pre et postnatals du developpement et de la 
sante de l'ENfant; France) (Drouillet et al. 
2009), I N MA (I Nfancia y Medio Ambiente; 
Spain) (Guxens et al. 2012), KANC (Kaunas 
Cohort; Lithuania) (Grazuleviciene et al. 
2009), MoBa (Norwegian Mother and 
Child Cohort Study; Norway) (Magnus 
et al. 2006), and Rhea (Greece) (Chaizi et al. 
2009) (Figure 2). Theohorts were selected 
because a) they each have a large set of exist-
ing longitudinal data from early pregnancy 
through childhood; b) they can implement 
new follow-up examinations of the children 
at similar ages (6-9 years), old enough for 
accurate rressurement of the phenotypes of 
interest for HELIX; and c) they can inte-
grate new questionnaires, biosampling, and 
clinical examinations in their new follow-ups 
using common protocols. The cohorts have 
worked together intensively and have pooled 
data as part of other European Community 
(EC) projects (Larsen et al. 2013; Vrijheid 
et al. 2012; see also Supplemental Material, 
Previous EU projects contributing data and 
expertise to HELIX, pp. 2-3). Theelection 
of cohorts followed a strategy to obtain data in 
different regions of Europe. 

Study populations. In general, exposure 
estimates can be obtained in cohort studies 
for very large numbers of subjects by exposure 
models and questionnaires, whereas expo-
sure and omics biomarkers can, for cost rea-
sons, be obtained only in smaller numbers of 
subjects. Assessment of individual exposure 
variability and validation of exposure mod-
els require very intensive data collection that 
is feasible only in an even sEtraller number 
of subjects. For these reasons, HELIX uses a 
multilevel study design, drawing on nested 
study populations for four differentlevels of 
data collection (Figure 3), as follows: 

1) The entire six cohorts comprising 32,000 
mother-child pairs will form the besis of 
existing data. From this study popula-
tion we will use existing exposure data 
such ffi tobacco use, ESCAPE (European 
Study of Cohorts for Air Pollution Effects) 
air pollution land-use regression (LUR) 
models (Eeftens et al. 2012), water dis-
infection by-products ( D BPs) exposure 
models from the HiWate project (Health 
Impacts of long-term exposure to dis-
infection byproducts in drinking water) 
(Niemenhuijsen et al. 2009), confounder 
data, and outcome data. Outdoor expo-
sure estinutes (research area 2, below) will 
be applied to these entire cohorts. Risk 
estimates for the effectsof combined out -
door exposures (the "outdoor exposome") 
on child health will be obtained in this 
study population. Harmonization of the 
existing data will build on protocols and 
expertise developed in earlier collaborative 
EC projects (Bousquet et al. 2011; Eeftens 
et al. 2012; Larsen et al. 2013; Vrijheid 
et al. 2012; see also Supplemental Material, 
Previous EU projects contributing data and 
expertise to HELIX, pp. 2-3). Outcort Yez. 

that can be harmonized across cohorts 
include birth outoornes; postnatal growth 
and body mass index (BM I); self reported 
wheezing, doctor-diagnosed asthma, and 
mew res of lung function; and neuro-
development harmonized as five neuro-
developmental constructs (general cognition, 
langr lay development, motor obi I it ies, socio-
emotional behavior, and attention deficit/ 
hyperactivity disorder symptomatology) 
wrces different ay groupi ngs. 

2)A HELIX subcohort of 1,200 mother-child 
pairs (Figure 3) will be fully characterized 
for the external and internal exposome, 
including exposure biomarkers during preg-
nancy and childhood and omics biomarkers 
during childhood. Thernpact of the total 
early-lifeexposome on child health will be 
characterized in these 1,200 mother-child 
pairs. Th4,200 mother-child pairs will be 
I 	tested within the entire cohorts by selection 
of 200 pairs from each cohort. Eligibility 
criteria include a) <-13-. 6-9 years, 7-8 years, 
if possible; the rij- range should be as nar-
row as possible for comparability of omics 
analyses and exposure-related behavior; 
b) stored pregnancy blood and urine sam-
ples available, and available sample volume 
sufficienfor the analysis of exposure bio -
markers detailed in research area 1; c) com-
plete add rr.!.s history available from firstto 
last follow-up point; ci) no serior.s health 
problems that, in the opinion of a Iccal cli-
nician, may affectthe performance of the 
clinical testing (e.g., spirometry) or affect 
the volunteer's safety (e.g., renal failure, 
pneumonia). In addition, the lection will 
consider whether data on important covari-
ates (genetic data, diet, socioeconomic fac-
tors) are available. Cohorts with more than 
the required number of mother-child pairs 
that meet these criteria wi II invite subjects at 
random from the eligible pool. Theew fol -
low-up examination will include the collec-
tion of new biological samples suitable for 
all planned biomarker and omics analyses 
(research areas 1 and 4, below). Theollec - 
tion of two urine samples (one before bed-
time and one fitstmorning void) will better 
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capture short-I ived biomarker metabolites 
and provide more staple rretapolome cover-
ay than would be achieved with one spot 
urine sample. Collected blood samples 
will be processed into appropriate matri-
ces (including whole blood, serum, and 
plasru) and storage media (for RNA and 
DNA extraction), and will be rapidly deep 
frozen under optimized and standardized 
processing procedures. Variables that can 
affectomics profiles,such as use of drugs, 
time of last meal, or physical exercise, will 
be collected. Trained nurde,, will carry 
out health examinations of the children. 
Examinations include MCEGU remen ts of 
weight, height, waist circumference, skin 
folds, blood pressure, and spirometry, 
and will follow standard operating pro- 
cedures. Standardized computer 	assisted 
interviews with the mothers will collect 
information on exposure sources (smok-
ing, cooking, heating, water consump-
tion), physical activity, time activity, 
diet, social factors, stress, and asthma and 
allergy. Neurodevelopmental outcomes will 
be assessed through a battery of interna-
tionally standardized, nonlinguistic, and 
culturally blind computer tests [n-back 
(Vuontela et al. 2003), Attention Network 
Test (Rueda et al. 2004), Trail Making 
Test (Lezak 2004), Raven (Raven et al. 
1998)]. Parents will complete the Conners 
Comprehensive Behavior Rating Scales 
(Conners 1997) and Child Behavior 
Checklist (CBCL; Achenbach and Resoorla 
2000) questionnaires to amiss child behav-
ioral problems. Besides the standardization 
of procedures and questionnaires, the proj-
ect will implement data collection QA/QC 
(quality aEsurance/quality control) through 
the central training of nurd.s and field 
workers—including training workshops 
with harmonization and reliability exercises 
(e.g., for the ski nfold measurements)—
and through visits of coordinators to 
the local cohorts during the fieldwork 
to monitor adherence to the standard 
operating procedures. 

3) Panel studies (Figure 3) will collect data on 
short-term temporal variability in exposure 
biomarkersand omics biomarkers, on indi-
vidual behaviors (physical activity, mobil-
ity, time activity), and on personal and 
indoor exposures. A "Child Panel Study" 
(Figure 3) will include children from the 
HELIX subcohort (n = 150; 25 from each 
cohort) and will thus be based on the same 
inclusion criteria. An added requirement 
for the panel study is that children must be 
able to wear equipment without destroying 
it. Invitations will be sent to all families 
included in the subcohort; but because of 
the intensive monitoring involved, it is 
expected that only the most cooperative  

families will agree to participate, so ran 
domness cannot be guaranteed. Detailed 
information allowing discussion if the 
panel study differsfrom the larger groups 
will be available. A "Pregnancy Panel 
Study" (Figure 3) will include 150 preg-
nant women, 50 from three of the regions 
under study, and these will be volunteer 
women from outside the cohorts; mothers 
from the cohorts cannot be used for this 
purpose because their pregnancies occurred 
several years previously. Criteria for inclu-
sion are si ngleton pregnancy, ay 18 years 
at the time of start of pregnancy, firstvisit 
to be conducted before week 20 of the 
pregnancy, and residence in the study area 
covered by the cohort. Study areas will be 
defined,taking into account the avai labi I i ty 
of fine-soaleair pollution models; as far as 
possible the area; should correspond to the 
study areas of the original cohorts, or at 
least cover similar area;. 

Subjects in the two panel stud iEs wi I I be 
followed for 1 week in two seasons. From 
these subjects we will collect daily urine 
samples—firstmorning and last nighttime 
voids, and from the pregnant women an 
additional midday void if passible. At the 
end of each monitoring week, blood sam-
ples wi II be collected following the same 
procedures as for the subcohort. Subjects 
or their mothers will complete diaries to 
collect information on meal times, cosmet-
ics and medication use, and urination fre-
quency for input into the physiologically 
based pharmacoki net ic (PBPK) models 
(described under research area 1, below). 
The subjects will carry smartphones and 
personal monitors, and indoor air and 
noise monitors will be installed in the 
homes (research area 2). Additional 
QA/QC procedures in the panel studies 
will ensure that the two monitoring periods 
follow the same procedures in all cohorts 
and that blood is collected at approxi-
mately the same time of the day and under 
the same conditions in both periods and 
in all cohorts. Thit important to reduce 
variability in the omics analyses. 

4) Health impacts for the larger European 
population will then be estimated using 
the exposure levels and dose-response rela-
tions from HELIX (Figure 3), together 
with doEe-re3ponseand thriioldestinkites 
from the literature and prevalence data 
from European registries and birth cohorts 
(Vrijheid et al. 2012). 

Measuring the External 
Exposome 
Accurate assessment of environmental 
exposures (reduction of exposure misclas-
sification) remains an important outstand-
ing challenge for health risk and impact  

aasessment. I n developing the exposome con-
cept, this challenge is multiplied because it 
requires obtaining exposure data for many 
differentexposu IES. Within theexternal expo -
some, a distinction can be made between 
largely individuallyames3ed exposures such as 
ETS, water contaminants, persistent organic 
pollutants (POPs), pesticides, and met-
als, which are traditionally amassed through 
questionnaires and/or biomonitoring on an 
individual basis, and exposures in the outdoor 
environment such as outdoor air pollutants 
and noise, where, so far, the residence is taken 
for estimation of exposure, ignoring mobility. 

Rani area 1: individual exposures. 
Individually assessed exposures can vary on 
an hourly or daily to yearly basis. Temporal 
variability is particularly high for exposures 
with a short biological half-life and little con-
stancy in the underlying exposure behavior 
[e.g., bisphenol A (BPA), phthalates, organo-
phosporous pesticides (Bradman et al. 2013; 
Braun et al. 2011; Phi I ippat et al. 2013; Preau 
et al. 2010)]. For such exposures, intra- com-
pared with interindividual variability is known 
to be high, and only many repeat measure-
ments over time may give improved exposure 
Estimates. For more persistent exposures, bio-
markers give more long-term exposure esti- 
n 	rates that are influenced by changes in diet 
or behavior, for example, by breEstfeeding pat-
terns. Research area 1 will rneesure exposure 
biomarkers in the subcohort (n = 1,200) in 
appropriate biological samples newly collected 
from the children and previously collected 
from mothers during pregnancy. Biomarkers 
include POPS—PCBs (polychlorinated 
biphenyls), dichlorodiphenyldichlorcethylene 
(D DE), hexachlorobenzene (HCB), poly-
bromi nated diphenyl ethers (PBDEs), per-
fluoroalkyl substances (PFASs)—in blood 
samples, nonpersistent chemicals—phthal- 
ates, phenols, oryanophcsphate pesticides 	in 
urine samples, metals in blood, and cotinine 
as a biomarker of ETS exposure (Table 1). 
Pre- and postnatal questionnaires will collect 
information on water consumption habits, 
which will be combined with information on 
concentrations of DBPs in drinking water 
from water companies to obtain estimates of 
exposure to DBPs. Questionnaires will also 
collect information on sources of indoor air 
pollution including ETS, cooking and heat-
ing appliances, and ventilation (Table 1). In 
the panel studies, indoor air pollution will be 
measured to characterize errors when using 
exposure information from questionnaires and 
models. Thisvi II be done using pEEsivesam -
piers for nitrocyn dioxide (NO2) and BTEX 
(benzene, toluene, ethylene, and xylene), and 
active PM2.5  (particulate matter with diam-
eter 2.5 pm) cyclone pumps, installed in 
the home. The panel studies will measure 
daily repeat biomarkers of the nonpersistent 
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chemicals (phthalates, phenols, organophcs-
phate pesticides) in urine (Table 1); these 
data will be used to characterize inter- and 
intraindividual variability in these urine bio-
markers, and where possible, correct for the 
uncertainties in the larger cohort. 

One further source of uncertainty in 
exposure estimates based on biomarker con-
centrations is their relationship to the internal 
biologically effectivedose (S:tbus et al. 2011). 
The measured biomarker concentration can-
not always be considered as a steady-state 
concentration (particularly for nonpersistent 
chemicals), nor ffi a surrogate for the internal 
dose of the target tissue and has often not been 
sampled during theenti re critical time window 
(Bartell et al. 2004; CleAel I et al. 2008). Here, 
modeling the toxicokinetics of the chemical 
using PBPK may help the interpretation of 
the measured biomarker data. PBPK models 
describe the fate of chemicals in the body 
using individual-specific information about 
the physiology (age, sex, weight) and the bio-
chemistry (enzyme content) of the individual 
as well as information on the individual's 
behavior (breasifeeding, physical activity, diet) 
(Beaudouin et al. 2010). In the context of 
population (epidemiological) studies, PBPK 
models can be used to simulate exposure dur-
ing critical time periods in between biomarker 
meEsurut 	ent points (e.g., Gasoon et al. 2013b; 
Lyons et al. 2008; UlaszeAska et al. 2012). 

Table 1. Individual exposures. 

To be relevant, this approach requires detailed 
input data on individual characteristics and 
behaviors to minimimasumptionsand uncer-
tainties. HELIX will evaluate the use of PBPK 
modeling to interpret biomarkers of exposure 
to PFA% [perfluorooctanesulfonate (PFOS), 
perfluorooctanoicscid (PFOA), and di(2-eth - 
ylhexyl) phthalate (DEHP)]. For the PFA%, 
we propose to relate the biomarker measure-
ment in the child to that in the mother dur-
ing pregnancy using an expcsurescenario that 
integrates rieternal-fetal transfers during preg-
nancy, transfers via breast milk, and diet dur-
ing childhood. For DEHP, repeat biomarkers 
in the panel studies and information on expo-
sure-related behaviorsand urination times will 
be used to evaluate the predictable value of 
different numbers of biomarker meEsurerrents. 

Remurch area 2: outcbor expcsures. For 
exposures that are traditionally assessed on 
the basis of residential location, such ffi out-
door air pollutants, noire and the built envi-
ronment, major improvements in exposure 
amassment and reduction in measurement 
error can be achieved by collecting informa-
tion on time-space activity, and, in the case 
of air pollution, on how much air a person 
inhales. Knowledge on physical activity, 
which constitutes a proxy of the inhalation 
rate (Kawahara et al. 2011), for example, 
may be integrated with personal air pollution 
measurements to estimate inhalation dose.  

New geographic i nforriet i on system (G IS)-
based exposure assessments (Beelen et al. 
2013; Eeftens et al. 2012), remote sensing 
(Dadvand et al. 2012), and smartphone tech-
nologies (de Nacelle et al. 2013) have made 
it easier to ca,T-1, outdoor exposures, and 
to integrate personal mobility and physical 
activity data. 

Research area 2 will construct a GIS 
environment for the six cohorts, and will assign 
exposure estimates for air pollutants, noise, 
ultraviolet (UV) radiation, temperature, built 
environment/green spaces. Thestinetes will 
build on existing LUR air pollution maps 
(Beelen et al. 2013; Eeftens et al. 2012), noise 
rircl..b, UV index and METEOSAT data, green 
space estimates, ffi well es walkabi I ity, build- 
ing density, and bike lane map i nforn 	ution 
for the built environment (Table 2). Data 
from existing regulatory monitors and remote 
sensing data (e.g., from the Tropospheric 
Emission Monitoring Internet Service; http:// 
www.temis.n1/)  will be used to inform ambi-
ent spatial exposure models. The aim is to 
obtain average exposure estimates for the preg-
nancy period, and during childhood for dif-
ferent time periods, including 1 day, 1 week, 
1 month, and 1 year before the outcome 
and omics assessment. Smartphones will be 
worn by the participants in the panel stud-
ies to provide geolocation data every second 
and the metabolic equivalent of tasks (METs) 

E>pcsure group 

PCB-153, DICE, I-CB, 
FECE-47 

FFAS F(S, FF04, 
FFBS, FR-1xS, FFNA) 

Metals (Hg, Pb, and 
TMS) 

Phthalates 
(13 metabolites) 

Phenols (EPA, 
paabens, 	EFS) 

CP pesticides 

Water [EFS 	Estimates available from 
previous HiVVAIE project 
during and after pregnancy 

Indoor air: Bla, 	Existing questionnaire data 
NO2, PM25 	on indoor sources during 

and after pregnancy. 

Existing questiomai re and 
cotinine data cluing and 
after pregnancy.  

Bicmarkers: in stored pregnancy blood samples' 
and in newly collected child blood samples. 

Bicmarkers: in stored pregnancy blood sarrplesa 
and in newly collected child blood sarples. 
FMK models for pregnancy and childhood. 

Bicrnarkers: in stored pregnancy sarrplesa and 
in newly collected child samples: blood (Fb), 
urine (TMS), and hair (I-1g). 

Bicmarkers: in stored pregnancy urine sampled' 
and in newly collected child urine sarples 
(last night and first morning void). 

Bicmarkers: in stored pregnancy urine sarplesb 
and in newly collected child urine sarples 
(last night and first morning void). 

Bicmarkers: in stored pregnancy urine sampled' 
and in newly collected child urine samples 
(last night and first morning void). 

questionnaireNew 	in children on water 
consumption and swimming combined with 
water company data. 

New questionnaire in children on cooking, 
heating, cleaning, and ventilation. 

New questionnaire in children. Bicma 
cotinine measurement in newly collected child 
urine and/or hair samples. 

Entire cohorts 	 FELIX subcohort 
	

Child Panel Study 	 Pregnancy Panel Study 
(n = 32,000) 	 (n = 1,200) 

	
(1 week in 2 seasons) (n = 150) 	(1 week in 2 seasons) (n = 150) 

Biomarkers: in daily repeat urine 
	

Biomarkers: in daily repeat urine 
sarples. Daily data on diet, 	samples. Daily data on diet, 
ccemetics. FEFK model for DE-P. cosmetics. FMK model for CB-P. 

Biomarkers: in daily repeat urine 
	

Biomarkers: in daily repeat urine 
samples. Daily data on diet, 	sarples over whole week. Daily 
cosmetics. 	 data on diet, cosmetics. 

Biomarkers: in daily repeat urine 
	

Biomarkers: in daily repeat urine 
samples in two seasons. Daily 	samples in two seasons. Daily 
data on diet and repellent use. 	data on diet and repellent use. 

Water conaxrption diaries. 	Water consumption diaries. 

Passive Bla and NO2  sampling in Passive BIER and NO2  sarrpl ing in 
the home. Active PM25 sa-rpling. 	the home. Active PM2  5 sampling. 
CaJestionnai re on cooking, 	Questionnaire on cocking, 
heating, cleaning, and ventilation. heating, cleaning, and ventilation. 

Questionnaire on ES. 	 Questionnaire on ES. 

Abbreviations: BP3, benzophenone-3; BPA, bisphenol A; BTEX, benzene, toluene, ethylbenzene, xylene; DBPs, disinfection by-products; DOE, dichlorodiphenyldichloroethylene; DB-IP, 
di(2-ethylhexyl) phthalate; ETS, environmental tobacco smoke; l-CB, hexachlorobenzene; Hg, mercury; NO2, nitrogen dioxide; CP, organophospate pesticides; Pb, lead; PBCE-47, poly-
brominated diphenyl ether-47; PCB-153, polychlorinated biphenyl-153; PEAS, perfluoroalkylsubstances; PFBS, perfluorobutanesulfonicacid; PFHxS, perfluorohexanesulfonic acid; 
PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctane sulfonic acid; TCS, triclosan; TMS, total metal spectrum. 
'Where measurements are available from previous studies, these will be used. Pooling of ?. 2 urine samples when available. 
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eery 10 sec, derived from the built-in accel-
erometer and GPS (global positioning system) 
and integrated on the specially developed 
ExpoApp (Ateknea Solutions Catalonia SA., 
Barcelona, Spain). We will then translate 
these data into activity type (resting, cycling, 
car travel) and derive inhalation rates. The 
panel study subjects will also wear electronic 
wrist band UV dosimeters (Seckmeyer et al. 
2011), PM2.5  active samples (DCG4004 saen-
pl i ng pump with GK.05SH Cyclone inlet; 
BGI Instruments, Waltham, MA, USA), 
and MicroAthelorreters (AE-51; Enviroclata, 
Madrid, Spain) for continuous black carbon 
monitoring (Table 2). Personal exposure esti-
mates will be used to characterim uncertainties 
in thespatial exposure models. 

Integrating the External and 
Internal Exposome 
ReFearch area 3: irittwatingetpcsures Once 
individual and outdoor exposures have been 
Estimated, research area 3 will use analysis-of-
variance techniques, incorporating data from 
both the HELIX subcohort and the panel 
studies, to understand the variance compo-
nents for each key exposure (e.g., arising from 
diet, physical activity, or time of sampling) 
and describe the uncertainties in each of the 
expcsureestir 	r rates. Statistical techniques such 
as factor analysis and latent class analysis will 
be used to create a reduced set of continuous 
exposure indices based on commonly occur-
ring exposures, while individuals who share 
similar exposure profilesor "exposomes" will 
be defined.We will then determine the influ - 
ence of variables such es diet, socioeconomic 

Table 2. Outdoor exposures. 

status, study region, and SEE6Onality on these 
exposure indices or profiles. Specific atten-
tion will be given to the detection of cohort-
specific exposure patterns. 

Research area 4: integrating molecu-
lar exposure signatures. High-throughput 
molecular biology "omics" techniques (such 
es rretabolomics, proteomics, transcriptomics, 
epigenomics) have important potential for 
broad and untargeted characterization of the 
internal exposome (Ellis et al. 2012; Hebels 
et al. 2013). Here, the intact is in the identi-
ficationof exposure biomarkers and mechanis -
tic pathways. Research area 4 will determine 
molecular signatures associated with environ-
mental exposures through the meesurement of 
endogenous and xenobiotic it 	eltholite profiles 
in blood and urine, proteins in plasma, and 
coding and small noncoding RNAs (including 
miRNAs; microRNAs) and DNA methylation 
in whole blood. Omics tools wi II be employed 
mainly in the subcohort of 1,200 children 
with newly collected biossmples at 6-9 years 
of ay; the use of new samples ensures com-
parability between techniques and cohorts 
(Figure 4, Table 3; see also Supplemental 
Material, Detailed description of omics tech-
niques to be used in HELIX, pp. 4-6). The 
use of a similar time point for all omics tech-
niques also allows integration of the different 
techniques during data analysis. Genotyping 
is available already in most of the cohorts and 
will be completed where needed. Two main 
limitations in epidemiological studies aim-
ing to use omics biomarkers are tissue and 
intraindividual variability. Omics profilesare 
tissue specific,and the tissue of interest can  

usually not be obtained (e.g., adipose ti 	ate,  
brain ticsuP). ThEocis of HELIX is thus on 
markets in systemic biological samples (blood, 
urine) to evaluate the use of omics biomark-
ers as markers of exposure changes in (larger) 
epidemiological studies. Omics profileschange 
over time in the same person; a craw-omics 
paper with three repeat analyses in 16 subjects 
over 1 month showed that intraindividual 
variability for metabolomics and transcrip-
tomicswffi found to be lower than interindi-
vidual variability for almost all the biomarkers 
(Gruden et al. 2012). However, some sets of 
markers were highly variable within the carne 
subject and thus cannot be used directly in 
epidemiological studies. Further, longer time 
periods of 1 month are likely to give higher 
intraindividual variability. HELIX will make 
some progns toward characterizing infra- and 
interindividual variability in the metabolo-
mics and transcriptomics markers by analyzing 
repeat biological samples collected in the panel 
studies in different seesons. 

Themics work will be implemented in 
three general stages: 

Stage 1: Study design optimization. 
Biological samples collected in the panel 
studies (daily urine samples, two blood 
samples) will be used to assess detectabi I ity 
of omics markers and the likely sources of 
variability within and between individuals, 
using small numbers of subjects. ThesEe3ults 
will inform the design and interpretation of 
stages 2 and 3. 

Stage 2: Omit exposure associations in 
the biological samples newly collected in the 
subcohort (n = 1,200). Primary analyses will 

Entire cohort (n = 32,000), for 
Exposure group 	pre- and postnatal exposure periods 

Ambient air 	LLR model for NO2, PM25, 
pollutants 	PMT, PM25  absorba-ce, PM 

elemental analyses. Routine 
monitoring and OMI satellite data 
for temporal variability. 

Noise 	 Existing municipal noise maps to 
obtain spatial estimates. AdclroN 
based r 	iudeling of noise at the most 
and least exposed facade. 

Remote sensing (satellite) 
radiation maps. 

Temperature 	Rerrote sensing (satellite) 
temperature maps (from thermal 
infrared band) and data frurr Iccal 
meteorological stations. 

Built envirorrnent/ Nomnalized Difference Vegetation 
green spaces 	Index from satellite. Building density, 

walkability score. accessibility, bike 
lanes. etc.. derived frcm GS ciata. 

Subcohort 
(n = 1,200) 

LlRmodel for NO2, PM25,  PM 
PMT, PM25  absorbance, PM 
elemental analyses. Routine 
monitoring and OMI satellite data 
for temporal variability. 

New questionnaires in children on 
bedroom position, noise perception, 
etc. Noise estimates based on maps 
and questions. 

New questionnaires in children on 
traveling, use of sunscreens, clothes  
skin color. LW radiation estimates 
based on maps and questions. 

New questionnaires in children 
on heating and air conditioning. 
Temperature estimates based on 
maps and questions. 

New questionnaires in children on 
use of green `peas, public spaces, 
active transportation. 

Child Panel Study 
(1 week in 2 seasons) (n = 150) 

Inhalation rates and mobility ((FS) 
data from snartphones. Personal 
monitoring (24 hr-) of IRN/12.5  (and 
black ca 

Time—activity and mobility (GFS) data 
frcrn smartphones. 

Time—activity and mobility (GM) 
data frcrn s-nartphcnes and 
questionnaires. Personal monitoring 
using electronic lis/ dosimeters. 

Time activity and mobility (GFS) 
data from snartphones and 
questionnaires. Personal monitoring 
of temperature using electronic 
dosimeters. 

Time—activity aid mobility (GFS) 
data from snartphones and 
questionnaires. 

Pregnancy Panel Study 
(1 week in 2 seasons) (n =150) 

Inhalation rates and mobility 
(GFS) data from smartphones. 
Farsonal monitoring (24 hr) of 
PM25 and black carbon. 

Time—activity and mobility 
((J 	-b) data from smartphones. 

Time—activity and mobility 
(GFS) data from srrertphones 
and questionnaires. Personal 
monitoring using electronic LW 
dosimeters. 

Time—activity and mobility 
((a 	-b) data from smartphones 
and questionnaires. Personal 
monitoring of temperature 
using electronic dosimeters. 

Time—activity and mobility 
((3S) data from snartphones 
and questionnaires. 

Abbreviations: GIS, geographic information system; GPS, global positioning system; LIR land use regression; NO2, nitrogen dioxide; NOx, nitrous oxides; OM I, ozone monitoring 
instrument; PM25, particles 2.5 pm in size; PM25  absorbance, measurement of the blackness of PM25 filters—aproxy for elemental carbon, which is the dominant light-absorbing 
substance; PMc 	particles between 2.5 and 10 pm in size; PMio, particles < 10 pm in size. 
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evaluate three a priori defiredexposures (ETS, 
total POP concentration, and air pollution) 
and on the specificmultiple exposure clusters 
generated in research area 3. Ththree expo - 
sures hake been selected berarize we have oom-
paratively good long-term exposure estimates, 
and already there are some data from human 
omicsstudes (Bollati and Baxarelli 2010; Hou 
et al. 2011, 2012; Rusiecki et d. 2008). Pov\er 
calculations for these analyses are described in 
the Supplemental Material, Detailed descrip-
tion of omics techniques to be used in HELIX, 
pp. 4-6, and Table S1. Secondary analyses will 
examine other exposures. Panel study data will 
evaluate short-term exposure-omics associa-
tions fora range of exposures for which detailed 
data are collected in the panels: air pollution, 
noise, UV, aid nonpersistent chemicals. 

Stage 3. Omics-health associations. 
Biologically meaningful omics "hits" will 
be then linked to our main child health end 
points, similar to the "meet-in-the-middle" 
approach to biomarker discovery (Chadeau-
H yam et al. 2011). Theh i Id health outer 
will be largely continuous outcome scores 
(BM I z-spore, cognitive spore, lung function). 
If relevant, reverse causality potential may be 
evaluated in blood and urine samples availaple 

Pregnancy 

Existing biosarples 
in some cohorts 
-Crnics stage 3 

Figure 4. Timeline of the omics analysis. 

in some of the cohorts at earlier time points 
(Figure 4). 

To analyze, integrate, and interpret the 
large numbers of data generated by indi-
vidual omics techniques, HELIX will apply 
a pathway analysis approach. The biomark-
ers obtained from the association analysis, in 
combination with available libraries of bio-
logical pathways [Gene Ontology (http://www. 
geneontology.org/);  Kyoto Encyclopedia of 
Genes and Genomes (http://www.genome. 
jp/kegg/);  ReEctome (http://www.reactome. 
org/);  Comparative Toxioogenomics Database 
(http://ctdbase.org/)]  will be used to identify 
biological pathways of 	the expcsures. 
I clentificationand representation of biological-
toxicological pathways will be done using 
software such ffi Ingenuity Pathway Analysis 
(http://www.ingenuity.com/),  Cytoscape 
(Saito et al. 2012), and Impala (Kamburov 
et al. 2011). Pathway approaches combining 
data from different omics techniques (e.g., 
metabolomics and transcriptomics) are also 
starting to be developed to search for common 
pathways determining sensitivity to char .r-
ceutical and toxic xfints (Cavil) et al. 2011; 
..ennen et al. 2011; Kamburov et al. 2011); 
HELIX aims to use simi lar approaches. 

Childhood 	 6-9 years 

Panel study (n = 150) 
- Crnics stage 1, 2 

Associating the Exposome 
with Child Health 
Finally, one of the greatest challenges of the 
exposome concept lies in the ass sment of 
its association with health outcomes: How 
can we integrate multidimensional exposome 
data to draw meaningful conclusions about 
(child) health impacts? In general, environ-
mental health studies have considered single 
exposures or single families of exposure (e.g., 
atmospheric pollutants, drinking-water pol-
lutants). Notable exceptions of studies that 
have provided risk estimates for multiple 
exposures include a cram sectional EVVAS of 
diabetes (Patel et al. 2010, 2013) and a study 
by Budtz-Jorgensen et al. (2010) that con-
sidered both PCBs and mercury. Statistical 
analyses that consider many exposure vari-
ables simultaneously in a naive (agnostic) 
way, such as the EWAS, strongly increase the 
risk of observing random associations (false  
positives) because of multiple testing, and 
of underestimating the global effect of the 
environment. In developing statistical tools 
for the analysis of many exposure factors, 
we should draw important lessons from the 
achievements but also the I imitations (Shi and 
Weinberg 2011) of the parallel genome-wide 
association studies (GWAS) field, particu-
larly regarding the probably weak efficiency 
of purely agnostic approaches, the very large 
sample    required, and the need to r 
complementary approaches (e.g., pathway 
analysis) making use of a priori information. 

Further, the exposome incluclesevaluation 
of multiple exposures, omics markers, and 
outcor Ydz., each with very differentternporal 
scenarios. A challenge in the development 
of the statistical analysis protocols is to takes 
these complexities into account. For example, 
spatial models for the outdoor exposures are 
constructed for a specificyear and can then 
beextrapolated to relevant time periods (days, 
weeks, months, or years) backward or forward 

Pre- and postnatal exposure data 

FELIX subcohort (n = 1,200) 
- Cmics stage 2, 3 

Table 3. thiics anal ysesP 

DNA methylation 

Untargeted 1H NMR spectroscopy and semitargeted tPLGMS 
analysis in urine; targeted analysis in serum (using Biccrates 
Absolute IDZ) p180 Kit) in newly collected child samples. 

Targeted analysis in newly collected child plasma samples 
depending on results of analysis in the Child Panel Study. 

Next-generation sequencing alumina Hiseq2030) or microarray 
analysis of both rrRNAs and mFNAs in newly collected child 
whole blood samples. In addition, plasma will be collected to 
analyze miRNAs in the future. 

Infinit.rn Hunan Methylation 450 BeacChip for gencme-wide 
methylation analysis of CNA extracted from newly collected 
child whole blood samples. 

Further analysis of daily urine samples and single serum sample at the 
end of each week (in winter and summer seasons) to evaluate sources 
of variation and short-term exposure-omics associations. 

Initial illPPC) and (ARM (or similar) analyses in plasma samples collected 
at end of each week (in winter and summer seasons) to evaluate 
sources of variation and short-term exposure-cmics associations. 

Analysis of blood samples at the end of each week (in winter and simmer 
seasons) to evaluate sources of variation and short-term exposure-
omics associations. In addition, plasma will be collected to analyze 
miRNAs in the future. 

Analysis of blood samples at the end of each week (in winter and summer 
seasons) to evaluate sources of variation and short-term exposure-
omics associations. 

Crnics technique 

Metd)olomics 

Frotecrnics 

Transcriptomics 

Entire cohort 
(n = 32,003) 
	

Salocohort (n = 1,200 mother-child pairs) 	 Child Panel Study (1 week in 2 seasons) 0 = 150k 

Abbreviations: 1H NMR, proton nuclear magnetic resonance; iTRAQ, isobaric tags for relative and absolute quantitation; MRM, mass spectrometry-based multiple reaction monitoring; 
miRNA, microRNA; rrRNA, messengerRNA; UPLC-MS, ultra performance liquid chromatography-mass spectrometry. 
aDetails of the techniques are described in Supplemental Material, Detailed description of omics techniques to be used in HELIX, pp. 4-6. bThe Pregnancy Panel Study will collect 
biological samples similar to those of the Child Panel Study. Cmics analyses are currently not foreseen in the pregnant women, but samples wit be stored for future analysis, e.g., to 
evaluate whether specific arks findings from the children are replicated in the pregnant women. 
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in time using available monitoring sta-
tions data. For persistent pollutants we may 
assume that biomarkers give estimates over a 
relatively long time period, whereas for non-
persistent pollutants biomarkers will reflect 
only very recent exposures; in some caes we 
may assume a fairly constant exposure pat-
tern depending on the habits underlying the 
exposure (e.g., cosmetics use, dietary pat-
terns), whereas in other CESES exposure varia-
tions may be largely saEsDnal (e.g., sunscreens, 
pesticides). Neurodevelopment, growth and 
obesity, and asthma and allergies are each 
driven by extremely complex multistage 
developmental pros 	c that take plare pre- 
natally and during the firstyeas of past natal 
life. Commonly used statistical techniques 
for high-dimensional data, such as machine 
learning, dimension reduction, and variable 

lection techniques, need to be adapted to 
the longitudinal context by accommodating 
issues such as time-varying exposure effects, 
delayed effects, and effects of exposure tra-
jectories over time on outcome trajectories 
(Buck Louis and Sundaram 2012). 

Rmearch area 5: linking the expomme b 
child health. Research area 5 aims to develop 
a multistep approach that is based on several 
tools and methods and will produce risk esti-
mates for different types of exposure variables: 
1) Many single-exposurevariablm Thies an 

agnostic EWAS approach with no a priori 
information, in which all pairs of expo-
sure-outcome associations will be quan-
tified (using classical regrttbion models), 
appropriately control ling for false discovery 
rate (FDR), as is done in GWASand in the 
only published EWAS (Patel et al. 2010, 
2013); spline and other smoothing models 
(Slaiu and Werwatz 2005) will then look 
for possible thresholds in dose-response 
relationships. 

2) Combined exposure variables: Thiis an 
SEM approach (Budtz-Jorgensen et al. 
2010) in which synthet ic exposu re variables 
will be built based on previous knowledge 
summarized by directed acyclic graphs. 
Several ts of synthetic exposure variables 
will be considered, including those based 
on common exposure pathways (e.g., 
indoor and outdoor air pollutants), on 
exposure patterns generated by the project, 
and on knowledge of biological pathways. 

3) Groups of subjects sharing a similar expo-
some: This approach involves Bayesian 
profile regrion, which aims to identify 
groups of i nd ividuals sharing a simi lar expo-
some that at the same time show marked 
differences according to the health out-
come variable of study (Molitor et al. 2010; 
PthathomEs et al. 2011). T h its achieved 
by fitting model-based clustering to the 
exposure data, while allowing the outcome 
of intact to influenoecluster riunbership. 

This technique was used, for example, to 
identify as a high-risk set for lung cancer 
a cluster of subjects characterized by their 
living close to a main road, high exposure 
to PM10  (particulate matter with diam- 
eter 10 pm) and NO2, and carrying out 
manual work (Papathomas et al. 2011). 
Thitechnique considers the exposome as a 
whole instead of breaking up risks for indi- 
vidual exposures, and is therefore able to 
capture effects and complex interactions 
and combinations of exposures that cannot 
be detected with the EWASTprach. 
SEMs and Bayesian profile regression 

models will also be used to account for the 
effects of exposure messurement error and 
uncertainty, in addition to more classical 
mccourement error models such as regres-
sion calibration. The general idea is that 
these techniques treat exposures not as a 
fixedvalue, but as a distribution that can be 
informed from the repeated meEsurements 
(e.g., of nonpersistent pollutants) and per-
sonal measurements (e.g., of air pollutants) 
in the panel studies. Asa preliminary step, 
a simulation study aimed at comparing the 
efficiencpf variousstudy designs and statisti -
cal approaches to characterize the impart of 
the exposome on health will be conducted. 
With a sample size of 1,200 (subcohort), the 
agnostic EWASanalOswith control for FDR 
will have a power of 80% to detect a 3-point 
differencein a continuous outcome variable 
with a standard deviation of 15 (as in com-
mon neurodevelopment indexes), considering 
that 15% of the tested exposurEs wi I I show an 
association (Liu and Hwang 2007). Higher 
power will be achieved for exposures avail-
able for more subjects (e.g., air pollution) and 
more hypothesis-driven analyses. 

Heterogeneity between cohorts in temp  
of study design can play a role in the results 
of these analyses, but it will not be possible 
to separate these effectsfrom true differences 
between populations. We will address the issue 
of cohort differencEsin two ways: a) We will 
center all exposures using the cohort mean. 
Analyses conducted with mean-centered vari-
ables will remove differencesbetween cohorts 
and only consider within-cohort differences 
in exposure. b) We will document hetero-
geneity between cohorts, applying random 
effectsmodels where applicable, and conduct 
sensitivity analyses excluding one cohort 
at the time. 

limeamh area 6: health irrpact of multiple 
eq3o3unza Finally, research area 6 will estir 	Hate 
the burden of common childhood disasses 
that may be attributed to multiple environ-
mental exposures in Europe. It will construct 
scenarios for the health impact assessment, 
working from traditional one-exposure-one-
outcome assessments (e.g., traffic-related 
air pollution and asthma; mercury and  

neurodevelopment) to more complex benefit-
harm scenarios. For example, given increEsing 
obesity rates, children are encouraged to walk 
or cycle to school, which may lead to increased 
energy expenditure and possible reduction in 
weight and improvement in mental health. 
However, at the same time, longer duration 
of exposure to air pollutants, noi, and UV 
may lead to adverse health effectsand higher 
risks of accidents (Rojas-Rueda et al. 2012). 
Do the overall benefitsoutheigh these risks, 
and what should policy makes do to improve 
these conditions of active transportation? This 
work will integrate exposure, uncertainty, and 
biomarker data obtained in HELIX, risk Esti-
matm obtained in HELIX, exposure-response 
data from the literature, exposure data 
from other existing birth and child cohorts 
(Vrijheid et al. 2012) and Europe-wide sur-
Ne'‘,s, and prevalence data from existing health 
registries/surveys in Europe. Expert workshops 
will be organized to obtain information. 

Data warehouse. Data from the previous 
cohort follow-ups, the new follow-up when 
the children are 6-9 years of ale, the panel 
studies, and the omics and biomarker analyses 
will be stored in a common, central database 
(data warehouse) with common, centrally 
Established QA/QC procedures. Mechanisms 
to transfer and hold data from acrces cohorts 
and other partners will include the identifi-
cation of agreed data sets, specifications for 
the data warehouse, data validation, cleaning 
and harmonization procedures, and the Estth-
I ishment of robust data security mechanisms. 
Data analysis protocols will be Established and 
performed centrally by a statistical analysis 
task force. Further, the data warehouse will 
be established in a format that will allow 
future uses beyond the project as an acoasible 
resource for researchers external to the project. 
Procedures for external curbs will be devel-
oped and made public by the end of the proj-
ect; these will include information regarding 
data collection, data content, and procedures 
for data requests. 

Conclusions 
Thent a strong consensus that new integre - 
tive tools and approaches for human expo-
sure and risk characterization are needed 
to significantly advance environmental risk 
and health impact assessment and health 
protection (Cohen Hubal et al. 2010; Lioy 
and Rappaport 2011; National Research 
Council 2012). Qffrifical ly, new approaches 
are needed to meEsure and integrate a wide 
range of (known and unknown) chemical and 
physical exposures from differentsourcEs and 
link these to health. The exposome concept 
may be a useful paradigm for this. HELIX 
is one of the first attempts to describe the 
early-life exposome of European populations 
and unrael its relation to omics markers and 
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health in childhood. As proof of concept, 
HELIX will be able to evaluate the many 
challenges in the implementation of the expo-
some concept and will form an important first 
step toward the description of the life-course 
exposome and its health effects 
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